
166 Advanced Digital Systems

ing the single-precision format, the exponent field is calculated by adding the true exponent value to
the bias, 127, to get a final value of 131. Expressing these fields in a 32-bit word yields the floating
point value 0x41CA0000 as shown in Fig. 7.10.

Note that the sign bit is 0 and that the mantissa’s MSB has been omitted. This example is conve-
nient, because the binary representation of 25.25 is finite. However, certain numbers that have finite
representations in decimal cannot be represented as cleanly in binary, and vice versa. The number
0.23 clearly has a finite decimal representation but, when converted to binary, it must be truncated at
whatever precision limitation is imposed by the floating-point format in use. The number 0.23 can be
converted to a binary fraction by factoring out successive negative powers of 2 and expressing the re-
sult with 24 significant figures (leading 0s do not count), because the single precision format sup-
ports a 24-bit mantissa,

0.0011_1010_1110_0001_0100_0111_11

This fraction is then converted to a mantissa and power-of-two representation,

1.1101_0111_0000_1010_0011_111 × 2–3

A single-precision floating-point exponent value is obtained by adding the bias, 127+(–3) = 124, for
a final representation of

0011_1110_0110_1011_1000_0101_0001_1111 (0x3E6B851F)

These conversions are shown only to explain the IEEE formats and almost never need to be done
by hand. Floating-point processing is performed either by dedicated hardware or software algo-
rithms. Most modern high-performance microprocessors contain on-chip floating-point units
(FPUs), and their performance is measured in floating-point operations per second (FLOPS). High-
end microprocessors can deliver several gigaFLOPS (GFLOPS) of throughput on benchmark tests.
Computers without hardware FPUs must emulate floating-point processing in software, which can
be a relatively slow process. However, if a computer needs to perform only a few hundred floating-
point operations per second, it may be worth saving the cost and space of a dedicated hardware FPU.

TABLE 7.5 IEEE/Industry Floating-Point Formats

Format
Total
Bits

Exponent
Bits

Exponent
Bias

Smallest
Exponent

Largest
Exponent

Significant
Bits

Mantissa
MSB

Single precision 32 8 127 –126 +127 23 Hidden

Double precision 64 11 1,023 –1022 +1023 52 Hidden

Extended precision 80 15 16,383 –16382 +16383 64 Explicit

Quadruple precision 128 15 16,383 –16382 +16383 112 Hidden

0100 0001 1100 1010 0000 0000 0000 0000

Exponent Modified Mantissa

Sign

FIGURE 7.10 Single-precision floating-point expression of 25.25.

-Balch.book Page 166 Thursday, May 15, 2003 3:46 PM

Advanced Microprocessor Concepts 167

As can be readily observed from Table 7.5, very large and very small numbers can be represented
because of the wide ranges of exponents provided in the various formats. However, the representa-
tion of 0 seems rather elusive with the requirement that the mantissa always have a leading 1. Values
including 0 and infinity are represented by using the two-exponent values that are not supported for
normal numbers: 0 and 2n – 1. In the case of the single-precision format, these values are 0x00 and
0xFF.

An exponent field of 0x00 is used to represent numbers of very small magnitude, where the inter-
preted exponent value is fixed at the minimum for that format: –126 for single precision. With a 0
exponent field, the mantissa’s definition changes to a number greater than or equal to 0 and less than
1. Smaller numbers can now be represented, though with decreasing significant figures, because
magnitude is now partially represented by the significand field. For example, 101 × 2–130 is ex-
pressed as 0.0101 × 2–126. Such special-case numbers are denormalized, because their mantissas
defy the normalized form of being greater than or equal to 1 and less than 2. Zero can now be ex-
pressed by setting the significand to 0 with the result that 0 × 2–126 = 0. The presence of the sign bit
produces two representations of zero, positive and negative, that are mathematically identical.

Setting the exponent field to 0xFF (in single precision) is used to represent either infinity or an
undefined value. Positive and negative infinity are represented by setting the significand field to 0
and using the appropriate sign bit. When the exponent field is 0xFF and the significand field is non-
zero, the representation is “not a number,” or NaN. Examples of computations that may return NaN
are 0 ÷ 0 and ∞ ÷ ∞.

7.7 DIGITAL SIGNAL PROCESSORS

Microprocessor architectures can be optimized for increased efficiency in certain applications
through the inclusion of special instructions and execution units. One major class of application-spe-
cific microprocessors is the digital signal processor, or DSP. DSP entails a microprocessor mathe-
matically manipulating a sampled analog signal in a way that emulates transformation of that signal
by discrete analog components such as filters or amplifiers. To operate on an analog signal digitally,
the analog signal must be sampled by an analog-to-digital converter, manipulated, and then recon-
structed with a digital-to-analog converter. A rough equivalency of digital signal processing versus
conventional analog transformation is shown in Fig. 7.11 in the context of a simple filter.

Analog Filter

Analog
Input Signal

Analog
Output Signal

Analog to
Digital

Converter
DSP

Digital to
Analog

Converter

Digital
Samples

Digital
Samples

Analog
Input Signal

Analog
Output Signal

FIGURE 7.11 Digital signal processing.

-Balch.book Page 167 Thursday, May 15, 2003 3:46 PM

